
Method Entire test set Confounded test set Entire test set Confounded test set

logreg 0.59 (0.04) 1.00 (0.00) 0.82 (0.08) 0.98 (0.01)

logreg, ONION 0.91 (0.01) 0.68 (0.06) 0.93 (0.02) 0.88 (0.07)

MLP 0.61 (0.06) 0.79 (0.25) 0.82 (0.11) 0.93 (0.09)

DANN 0.78 (0.07) 0.80 (0.08) 0.86 (0.05) 0.93 (0.07)

reference 0.92 (0.02) 0.95 (0.01) 0.92 (0.02) 0.86 (0.04)

INTRODUCTION
• Statistical learning on biological data can be challenging due to confounding factors both 

intrinsic (e.g., diurnal variation) and extrinsic (e.g., collection and processing). 

• Confounding can cause models to generalize poorly and result in inaccurate performance 
metrics if models are not validated thoroughly.

• Consider all “positive” samples sourced from hospital A and all “negative” samples 
sourced from hospital B. It is unclear whether a classifier with good cross validation 
performance has learned features from the confounding signal (i.e., source hospital) or 
the signal of interest (i.e. positive/negative class label).

• Previous techniques to reduce confounding include:
• Stratified sampling (Wan et al., 2018), which may yield small sample sizes 
• Normalizing data using covariate labels, e.g., Hidden Covariates with Prior (Mostafavi et 

al. 2018) and ComBat (Johnson et al., 2007), which often requires test set covariate labels 
and model re-fitting at test time

• Domain knowledge-based sequencing technical bias correction, e.g. LOWESS (Cleveland 
1979; Benjamini et al., 2012), which may not apply to generic machine learning problems

• Our objective is to find a function ! that transforms the observed data " into a less confounded 
space. Note that confounding covariates may be used to learn !, but are not arguments of !.

• Let ": #×% be the observed data, where # is the number of observations and % is the number of 
features. The underlying data generation mechanism involves several factors including the 
disease status and possibly several confounders. Let &', &), … , &+,' represent the - − 1
confounders, where &0 is #×1, 1 ∈ 1,2, … , - − 1 , e.g., the age, sex, sample source institution, 
etc., and let &+: #×1 represent the phenotype of interest, e.g., the clinical disease labels.

METHODS

• Orthonormal basis construction in confounding factor normalization (ONION): Assume that "
has been centered. The objective of ONION is to rewrite " as " = "6 + "8, where "6 is 
associated with confounders &0, 1 ∈ 1,2, … , - − 1 and "8 is the residual after factoring out 
covariates. This is equivalent to constructing an orthonormal basis 9 for :; to project " and 
deconvolve the confounders.

Figure 1. Comparison of no confounder correction versus with correction on 
balanced test sets using simulated data. (A) Sample distribution in the training and 
test sets. (B) Performance as the number of samples varies. 

CONCLUSIONS
• If the confounding effect is not carefully corrected, one may observe inaccurate performance, with 

poor generalizability.
• Simulated experiments show that ONION and DANN outperform univariate ANCOVA. 
• Experiments using clinical cancer data show that ONION and DANN generalize well, reducing the 

gap between the performance on the entire test set and a confounded, subsampled test set. 
• Effective methods to mitigate the impact of confounders are subjects of ongoing research.
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Sex: Mean AUC (SD) GC: Mean AUC (SD)

AUC is the area under the receiver operating characteristic curve; SD is the 
standard deviation. In the sex confounding experiment, reference represents 
logreg trained without sex chromosomes. In the GC confounding experiment, 
reference represents logreg trained after LOWESS GC correction. These 
references serve as heuristic solutions when prior domain knowledge is given.

Figure 2. Confounding experiments using clinical cancer data. (A) Sample 
distribution in the training set and test sets. (B) Performance table.

• In simulated data, the performance gaps with and without confounder correction become 
apparent as the sample size increases, i.e., logistic regression (logreg) vs. logreg with ONION and
MLP vs. DANN. In addition, logreg with Univariate ANCOVA to filter confounded variables is 
marginally better than logreg (Figure 1). 

• In empirical data, without correcting for confounders (logreg and MLP), the performance is 
artificially high when the test set is confounded in the same manner as the training set. However, 
on the entire test set, without subsampling to mimic training set confounding, logreg and MLP 
models perform far worse than logreg with ONION and DANN, respectively (Figure 2).

• In the biological sex confounding experiment, signs of the weights associated with chrX and chrY in 
logreg without ONION are opposite, whereas they are all centered around zero in the model with 
ONION (Figure 3). 

• Domain-Adversarial Neural Network (DANN): DANN is a feed-forward neural network that 
shares at least one hidden layer between a target prediction network and a confounder prediction 
network (Ganin et al. 2016) . We train - − 1 networks !<= > " , 1 = 1, … , - − 1 to predict the -
− 1 confounders and !<? > " to predict the clinical label, where > is the shared feature 
extractor. Let @0 be the loss between predicted and actual &0. Training proceeds by alternating 
stochastic gradient descent updates to:

• ABC and A+C , >’s and !<? ’s parameters at step D:  

ABCEF = ABC − G
HI?
HJKC

and A+CEF = A+C − G
HI?
HJ?C

.

• ABC and A0C , >’s and !<= ’s parameters at step D, for 1 = 1, … , - − 1:

ABCEF = ABC + G ∑0M'
+,' HI=

HJKC
and A0CEF = A0C − G

HI=
HJ=C

.

9 =
| | … |
O' O) O;
| | … |

,99P = Q,

where O0 ∈ :; denotes the 1RS basis vector. 

" = "99P= "6 + "8, 

where "6 = ∑0T+ "O0O0
P and "8 = ∑0U+ "O0O0

P. 

O0 = VW>XVYZOP"P&0&0
P"O, 

s.t. O = 1 and OPO[ = 0 for ] < 1 < -.

Figure 3. Classifier weights associated with 
each feature in the sex confounding experiment. 
Logreg without ONION relies on sex to predict 
cancer.

Algorithm 1 presents a sequential algorithm using power 
iteration and deflation to satisfy the orthogonality 
condition. ONION peels away layers of confounders’ 
effects sequentially, hence the acronym.

RESULTS

DATASETS
• Confounded data simulation: We first study 

confounding in a well-understood setting by 
simulating confounded data (Figure 1A).

• Sequencing data from clinical cancer 
samples: The dataset consists of whole-genome 
sequencing of cell-free DNA from 520 cancer 
patients and 214 healthy patients. Experiments are 
conducted with 5-fold cross validation to test 
confounding correction methods on data 
confounded (1) by biological sex and (2) by GC bias, 
a batch effect from the process of extracting, 
preparing, and sequencing cell-free DNA. 

(*: authors with equal contribution)

The curves represent the mean AUC over 50 trials, and the shaded area represents +/- standard error. Number of simulated 
samples includes both label=1 and label=0 samples.
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