
Predicting gene expression from plasma cell-free DNA using both the 
fragment length and fragment position 

BACKGROUND
• The ability to use a blood sample to determine the transcriptional state of cells that are 

releasing DNA into the bloodstream of a patient may be helpful in a variety of clinical 
applications, including the early detection of cancer

• Cell-free DNA (cfDNA) contains epigenetic signatures of the cells from which it was 
produced. As a result, cfDNA can be used to predict the gene expression state of cfDNA-
producing cells. To date, the two published approaches used to predict gene expression 
largely ignore cfDNA fragment size1,2

• V-plots are a powerful visualization technique originally applied to MNase-seq data. These 
plots show the density of fragments of each length at a particular genomic location, 
and can provide single base pair resolution of nucleosomes as well as other proteins that 
protect DNA from digestion3

• cfDNA closely approximates MNase-seq data2,4,5; we therefore used V-plots as an 
information-rich input to our gene expression prediction model

OBJECTIVES
• To develop a gene expression prediction model that uses cfDNA fragment coverage and 

length to predict which genes are highly or lowly expressed in cfDNA-producing cells 

• To apply this model of gene expression prediction to a set of colon-specific genes in order 
to detect colon cancer and adjacent colon-derived cfDNA, which is expected to be present 
in patients with advanced colorectal cancer (CRC) 

METHODS
Sample collection
• De-identified plasma samples from patients with CRC (n=532) and non-cancer controls 

(n=234) were obtained from academic medical centers and commercial biobanks.  
CRC stage information was as follows: stage I (n=169), stage II (n=256), stage III (n=97), 
stage IV (n=6) and unknown stage information (n=4)

Figure 1. Model architecture from gene expression to disease prediction
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Figure 2. V-plots made from cfDNA capture DNA-protein associations and 
reflect transcriptional state
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Figure 3. Predicting gene expression from cfDNA-derived V-plots around  
TSS regions
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Wavelet compressed V-plot for ENSG00000084623 on one patient Wavelet compressed V-plot for ENSG00000082482 on one patient
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RESULTS
Figure 4. Interpretation of what the gene expression model learned
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• Strongest drivers of predicting “on” are dinucleosome peaks flanking the TSS both up and 
downstream (Figure 4 Region 1) and a relatively weak mononucleosome band

• Strongest drivers predicting “off” are mononucleosome positions (especially Figure 4 
Region 2) and a relatively weak dinucleosome band

• Although not always present, short sub-mononucleosome fragments at the TSS support  
an “on” prediction (Figure 4 Region 3) (see the logistic regression coefficients in Figure 3 
for more evidence of this)

Figure 5. Classifiers using representations of fragment length and position 
accurately categorize “on” and “off” genes

In addition to categorizing “on” and “off” gene expression, we also looked at a more 
challenging task: the presence or absence of accessible chromatin as measured 
by ATAC-seT in two cell populations of blood, one expected to be much more 
abundant than the other. 2ur method was still able to differentiate cfDNA regions 
with monocyte specific ATAC-seT peaks from those with pDC specific peaks. These 
peaks are not limited to any particular function, and can include TSSs as well as
other kinds of distal enhancers, for example.
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Normalized TSS coverage only uses normalized fragment counts in “on” vs “off” genes to predict expression. This works because “on” genes have lower 
coverage (are less protected by nucleosomes) than “off” genes.1

FPKM - a normalized RNA-seq measurement of relative expression Fragments Per Kilobase of transcript per Million mapped reads.
pDC - plasmacytoid dendritic cell
ROC - receiver operating characteristic
AUC - area under the receiver operating characteristic curve 

Figure 6. Tumor-targeted gene set enables classification of cancer samples 
as a function of cfDNA tumor fraction rather than stage
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NOTE: “All” includes samples with missing stage information.

• For this approach we used 44 genes expressed in colon and not in blood cells as measured 
in the Roadmap Epigenomics Project.7 We expect that colon genes will be expressed 
in colon cancer, as well as adjacent healthy colon tissue, which does not contribute 
substantial quantities of material to cfDNA in healthy individuals10

• IchorCNA-based TF estimates (ITF) increase with stage but most stage I-III CRC have low 
estimated ITF (<1%) (Figure 6A)

• Classification performance increases more strongly by tumor fraction than stage 
(Figure 6B & 6C) 

Figure 7. Average gene expression prediction can augment CNV-based  
tumor fraction estimation

• A high ITF non-cancer control displayed a low average probability of expression P(“on”) 
of the 44 colon genes, differentiating it from high ITF CRC samples (Figure 7). These copy 
number changes may either be germline or somatic but do not originate from colon/CRC 
DNA. Plausible sources include DNA from blood-cells or from a non-CRC tumor
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CONCLUSIONS
• 2D representations of fragment length and location can be 

used to accurately predict extremes in gene expression  
(Figure 5)

• The method presented here can accurately predict whether 
a patient has cancer with high fractions of tumor-derived 
cfDNA, which are typically observed in later stages but can be 
observed at any stage of disease (Figure 6)

• Despite limited sensitivity in patients with low tumor fractions, 
one practical use for this method is in identifying cases where 
observed CNVs in cfDNA do not originate from the cancer of 
interest (Figure 7)

NEXT STEPS
• This approach could be used with different cell-type-specific 

gene sets to predict the tissue of origin of a cancer

• We are in the process of evaluating and verifying this approach 
on immune-derived signals, as well as combining with other 
analytes, for early cancer detection
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