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BACKGROUND

The ability to use a blood sample to determine the transcriptional state of cells that are
releasing DNA into the bloodstream of a patient may be helpful in a variety of clinical
applications, including the early detection of cancer

Cell-free DNA (cfDNA) contains epigenetic signatures of the cells from which it was
produced. As a result, cfDNA can be used to predict the gene expression state of cfDNA-
producing cells. To date, the two published approaches used to predict gene expression
largely ignore cfDNA fragment size'*

V-plots are a powerful visualization technique originally applied to MNase-seq data. These
plots show the density of fragments of each length at a particular genomic location,

and can provide single base pair resolution of nucleosomes as well as other proteins that
protect DNA from digestion®

fDNA closely approximates MNase-seq data®"%; we therefore used V-plots as an
information-rich input to our gene expression prediction model

OBJECTIVES

To develop a gene expression prediction model that uses cfDNA fragment coverage and
length to predict which genes are highly or lowly expressed in cfDNA-producing cells

To apply this model of gene expression prediction to a set of colon-specific genes in order
to detect colon cancer and adjacent colon-derived cfDNA, which is expected to be present
in patients with advanced colorectal cancer (CRC)

METHODS

Sample collection
De-identified plasma samples from patients with CRC (n=532) and non-cancer controls
(n=234) were obtained from academic medical centers and commercial biobanks.
CRC stage information was as follows: stage | (n=169), stage Il (n=256), stage lll (n=97),
stage IV (n=6) and unknown stage information (n=4)

Figure 1. Model

Predicting gene expression from plasma cell-free DNA using both the

fragment length and fragment position
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Figure 2. V-plots made from cfDNA capture DNA-protein associations and
reflect transcriptional state
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Figure 3. Predicting gene expression from cfDNA-derived V-plots around
TSS regions
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Figure 4. Interpretation of what the gene expression model learned
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Strongest drivers of predicting “on” are dinucleosome peaks flanking the TSS both up and
downstream (Figure 4 Region 1) and a relatively weak mononucleosome band

Strongest drivers predicting “off” are mononucleosome positions (especially Figure 4
Region 2) and a relatively weak dinucleosome band

+ Although not always present, short sub-mononucleosome fragments at the TSS support
an “on” prediction (Figure 4 Region 3) (see the logistic regression coefficients in Figure 3
for more evidence of this)

Figure 5. Classifiers using representations of fragment length and position
accurately categorize “on” and “off” genes
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Figure 6. Tumor-targeted gene set enables classification of cancer samples
as a function of cfDNA tumor fraction rather than stage
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For this approach we used 44 genes expressed in colon and not in blood cells as measured
in the Roadmap Epigenomics Project” We expect that colon genes will be expressed

in colon cancer, as well as adjacent healthy colon tissue, which does not contribute
substantial quantities of material to ¢fDNA in healthy individuals®

IchorCNA-based TF estimates (ITF) increase with stage but most stage Il CRC have low
estimated ITF (<1%) (Figure 6A)

Classification performance increases more strongly by tumor fraction than stage
(Figure 68 & 6C)

Figure 7. Average gene expression prediction can augment CNV-based
tumor fraction estimation
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Anhigh ITF non-cancer control displayed a low average probability of expression P(*on”)
of the 4t colon genes, differentiating it from high ITF CRC samples (Figure 7). These copy
number changes may either be germline or somatic but do not originate from colon/CRC
DNA. Plausible sources include DNA from blood-cells or from a non-CRC tumor
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2D representations of fragment length and location can be
used to accurately predict extremes in gene expression
(Figure 5)

+ The method presented here can accurately predict whether
a patient has cancer with high fractions of tumor-derived
cfDNA, which are typically observed in later stages but can be
observed at any stage of disease (Figure 6)

Despite limited sensitivity in patients with low tumor fractions,
one practical use for this method is in identifying cases where
observed CNVs in cfDNA do not originate from the cancer of
interest (Figure 7)

NEXT STEPS

+ This approach could be used with different cell-type-specific
gene sets to predict the tissue of origin of a cancer
We are in the process of evaluating and verifying this approach
on immune-derived signals, as well as combining with other
analytes, for early cancer detection
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