Evaluation of a sensitive blood test for the detection of colorectal advanced adenomas in a prospective cohort using a multiomics approach

C. Jimmy Lin¹, Eric Ariazi¹, Michael Dzamba¹, Teng-Kuei Hsu¹, Steven Kothen-Hill¹, Kang Li¹, Tzu-Yu Liu¹, Alina Polonskaia¹, John St. John¹, Daniel Steiger¹, Peter Ulz¹, Irving Wang¹, Jiajie Xiao¹, Rui Yang¹, Girish Putcha¹, and Aasma Shaukat²

INTRODUCTION

- Blood tests for colorectal cancer (CRC) with high sensitivity and specificity can improve adherence, facilitate early detection, and ultimately reduce mortality from CRC
- As previously reported, our multiomics blood test detects early-stage (I/II) CRC at a sensitivity of 94% and specificity of 94%¹ (**Figure 1**)
- The detection and subsequent removal of adenomas, especially advanced adenomas (AA). saves lives²
- $\sim 60 \times \text{greater impact on CRC-specific mortality for adenoma vs CRC sensitivity^{3,4,5} ($ **Figure 2**)

mortality action (%)

с С ф

Figure 2. CRC-specific mortality reduction

~60X greater

eduction in mortality

for adenomas

0.05%

CRC

is impacted far more by adenoma

sensitivity than by CRC sensitivity

3%

Adenoma

- Current stool-based tests, such as FIT and FIT-DNA, have AA sensitivities of 24% and 42%, and specificities of 95% and 87%⁶, respectively
- To date, blood tests that rely on tumor-derived cell-free DNA (cfDNA) methylation signatures alone have shown limited sensitivity for AAs⁷

Figure 1. Multiomics blood test detects early-stage CRC¹

*4 samples with unknown stage were tested, 3 were classified correctly

OBJECTIVES

- To demonstrate that AAs can be detected from blood using a multiomics approach combining both tumor- and immune-derived signatures from cell-free nucleic acids and plasma proteins in prospectively collected colonoscopy-confirmed advanced adenoma samples and colonoscopyconfirmed negative controls
- To compare the multiomics blood test to other single assay approaches (e.g., cfDNA methylation or CEA

Figure 3. Biological signals change as cancer evolves

- While tumor-derived signals are abundant in later-stage disease, signals from non-tumor sources (e.g., the immune system) predominate in earlier stages
- A multiomics approach that complements tumor-derived signals with non-tumor-derived signals can better address the inherent limitations of a strategy focused on only a single assay

STUDY DESIGN AND METHODS

Figure 4. Study design and methods

- Blood samples were collected from participants enrolled in AI-EMERGE[®], a prospectively collected, multi-center study that included average-risk screening patients
- Plasma from colonoscopy-confirmed AAs and negative controls were analyzed and signatures were generated for cell-free nucleic acids based on next-generation sequencing and for plasma proteins based on highthroughput multiplexed assays
- Modeling involving a combination of convolutional neural networks and regularized logistic regression was performed
- To train and evaluate a model, 10-fold cross-validation was performed. Each sample was tested once in a hold-out test set, and assessed by a model that had never seen that sample in training.

RESULTS

¹Freenome, South San Francisco, California, USA; ²University of Minnesota, Minneapolis, Minnesota, USA

Figure 5. Multiomics blood test achieved 41% AA sensitivity at 90% specificity

• AA sensitivity was greater than mSEPT9, the only blood test for CRC screening currently available • AA sensitivity was much higher than FIT and comparable to FIT-DNA

Figure 6. AA sensitivity was similar across size, histology, and location

• AA sensitivity increased with increasing size, similar to fecal tests⁶

• Performance was similar across histological subtypes, with the exception of sessile serrated lesions

• Higher sensitivity was observed for proximal versus distal lesions

Whiskers show 95% confidence interval for sensitivity

Presented at the 2021 Gastrointestinal Cancers Symposium

CONCLUSIONS

- Our novel multiomics blood test detected colorectal AAs from a predominantly averagerisk, prospectively collected study and achieved sensitivity of 41% at a specificity of 90%
- This AA performance is comparable to that of existing stool-based tests
- AA sensitivity improved with increasing lesion size and was consistent across location and histology (except for serrated lesions)
- By combining signatures from both tumorand non-tumor (e.g., immune) derived sources, our multiomics test detected approximately twice as many AAs as methylation-only or single-protein approaches
- Sensitive AA detection at levels similar to or better than currently available stool tests is achievable in blood, which is necessary for effective early detection and prevention of CRC

ACKNOWLEDGEMENTS

The authors gratefully acknowledge:

- All participants enrolled in AI-EMERGE®
- Members of the Freenome Clinical Development and Clinical Laboratory teams for securing and processing samples
- Richard Bourgon, Adam Drake, Barbara Engelhardt, Signe Fransen, Julie Granka, John Hawkins, Greg Hogan, Brian O'Donovan, Nathan Wan, Hayley Warsinske, and David Weinberg for scientific input and editorial support

REFERENCES

- 1. Putcha et al., ASCO GI. 2020
- 2. Gupta et al., Gastroenterology. 2020
- 3. Corley et al., N Engl J Med. 2014
- 4. Meester et al., Cancer. 2015
- 5. Haug et al., Int J Cancer. 2015
- 6. Imperiale et al., N Engl J Med. 2014
- 7. Potter et al., Clin Chem. 2014