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INTRODUCTION AND OBJECTIVES
•	 Plasma profiling can non-invasively identify biomarkers associated with treatment 

outcomes and reveal mechanisms underlying drug resistance.

•	 Loncastuximab tesirine (lonca), an antibody-drug conjugate comprising a 
humanized anti-CD19 antibody and a pyrrolobenzodiazepine dimer cytotoxin, is 
indicated for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) after 
≥2 systemic treatments.

•	 The objective of this study was to investigate biological signatures associated with 
response to lonca using plasma-derived cell-free DNA (cfDNA) samples from 145 R/R 
DLBCL patients in a phase 2 trial (NCT3589469, LOTIS-2).

METHODS
•	 Cell-free DNA (cfDNA) was extracted from 100 patients at baseline and 80 patients 

on treatment (cycle 2 day 1; C2D1).

•	 Low-pass whole-genome sequencing was performed to characterize cfDNA 
fragments, which reflect nucleosome protection and chromatin state.

•	 Gene activation for protein-coding genes was inferred from fragment distribution 
around transcription start sites1 to generate Transcription Start Site Gene Activation 
Probability scores (TSS-GAP; a schematic of the approach is shown in Figure 1).

•	 Binding activity of 504 cancer-associated transcription factors (TFs) was estimated 
by inferring the level of chromatin accessibility from ~1000 binding sites per factor 
across the genome to give Transcription Factor Binding Association (TFBA) scores2. 

•	 Class comparison statistics for TSS-GAP and TFBA features were performed using 
the Wilcoxon signed rank test for paired longitudinal comparisons. 

•	 Gene Set Enrichment Analysis (GSEA) was performed using Molecular Signatures 
Database (MSigDB) sets. P-values were corrected for multiple hypothesis testing to 
control the False Discovery Rate (FDR).

•	 A multivariate classifier for response assessment according to 2014 Lugano 
classification was constructed by applying L1-regularized logistic regression on 
both TSS-GAP and TFBA features (as in Figure 1).

•	 Clinical lab data including Chem-20 panel results, complete blood count results, 
and additional immunophenotyping (CD5/19/20/21/23/43, BCL1/2/6, Cyclin D1, 
ZAP-70) were incorporated into the multivariate modeling by concatenating these 
values with the TSS-GAP scores.

Table 1. Cohort description and profiling

CR/PR SD/PD p-value

Age 63 (23-83) 63 (24-82) 0.96a

Sex

Male  31 (70.5%) 26 (63.4%) 0.65b

Female 13 (29.5%) 15 (36.6%) 0.65b

Prior Therapies

Rituximab-CHOP 25 (61%) 32 (72.7%) 0.97b

Rituximab-GDP 6 (14.6%) 8 (18.2%) 0.97b

Rituximab-ICE 13 (31.7%) 15 (34.1%) 0.97b

a1-way ANOVA
bChi-square frequency test

Figure 1. Cohort description and profiling
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•	 Regression modeling strategy including training/validation folds
•	 Logistic regression using L1 regularization

Figure 2. Lonca treatment reduces cfDNA-estimated levels of CD19 but 
not of other immune markers
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•	 We evaluated longitudinal changes in TSS-GAP scores occurring during treatment 
with lonca between C2D1 and baseline

•	 Estimated levels of CD19, a proxy for B-cell abundance, significantly decreased 
after treatment (Wilcoxon signed-rank paired test: p = 2.2E-3), which supports the 
hypothesis that lonca is actively reducing B-cells

•	 Markers of two other immune populations showed no significant change  
(CD14, p = 0.54; CD3E, p = 0.39).

Figure 3. Gene set enrichment analysis reveals significantly decreased 
signatures for B-cell gene sets in treated cases compared to baseline
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•	 GSEA identified 157 significantly enriched sets (152 reduced after treatment;  
False Discovery Rate (FDR) < 5%), including B-cell gene set signatures decreasing 
from baseline

•	 The 20 significantly enriched immunologic signatures (C7) gene sets (FDR < 5%) 
reveal downregulation of B-cell-related sets amongst other signatures of immune 
suppression compared to baseline.

Figure 4. Multivariate classifier distinguishes responders from non-
responders at baseline in cross-validation
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•	 To construct a multivariate classifier for response using baseline data, we applied a 
L1-logistic regression model to both the computational TFBA and TSS-GAP features 
to identify the best features. 

•	 Early results with TFBA scores suggested transcription factor features to be the 
most informative (AUC = 0.65), so we selected the 2,751 TSS-GAP scores for all  
transcription factors across the genome to include in the multivariate classifier.

•	 Clinical lab data, from standard blood chemistry tests and immunophenotyping as 
detailed in the methods, was also incorporated into the modeling by concatenating 
it with the TSS-GAP TF scores.

•	 Shown here is the final model combining TSS-GAP TF scores and clinical lab data  
to distinguish patients based on predicted response groups in cross-validation  
(AUC = 0.75; AUPRC = 0.74).

Figure 5. Gene set enrichment analysis reveals higher activation levels of 
proliferative and immune gene sets in non-responders at baseline
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•	 GSEA of TSS-GAP scores between responders vs non-responders revealed 3145 
significant gene sets (FDR<5%) out of 32639 tested.

•	 11 significant Hallmark (H) gene set signatures (FDR<5%) reveal higher activation 
levels of proliferative activity sets in non-responders at baseline.

•	 1257 significant immunologic signatures (C7) gene set signatures (FDR<5%) reveal 
changes in immune activation; notably evidence of increased immune activity is 
seen in non-responders relative to responders at baseline. Top 10 gene sets ranked 
by score are plotted for visualization.

CONCLUSIONS
•	Using our platform, we characterized a cohort of R/R DLBCL 

patients at baseline and on treatment (cycle 2 day 1; C2D1) 
with loncastuximab tesirine. 

•	The results showcase the potential of our approach to 
identify markers associated with response to lonca and 
suggest mechanisms of resistance, potentially informing 
rational drug combination research.

•	Our modeling efforts integrating TSS-GAP and clinical data 
indicate the potential of this approach to predict lonca 
efficacy, pending additional validation.

•	Future studies with our platform may enable targeted 
precision medicine applications and therapeutic decisions.
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