Design and Implementation of a Clinical Study to Validate a Multiomics Blood Test for Colorectal Cancer Screening

BACKGROUND Proteins DNΔ • Recent guidelines recommend initiating colorectal cancer (CRC) screening at age 45^{1,2}, increasing the number of screen-eligible individuals by $>19M^3$ • Only ~67% of average-risk individuals over the age of 50 years are up-to-date on CRC screening⁴ and it will likely be more challenging to screen younger people • Certain populations have even lower screening rates, specifically individuals aged 50-54 **Blood Sample Multiomics** Platform years (48%), those on Medicaid or other state plans (53%), and Hispanic individuals (59%)⁵ • These same groups with lower screening rates often comprise a large percentage of the Figure 3. Our CRC blood test detected early-stage CRC (I/II) with a screen-eligible population. For example, ~24% of individuals eligible for CRC screening are sensitivity of 94% and specificity of 94%⁷ Medicaid recipients.⁶ • Further, participation by minorities in clinical trials remains challenging and this is unfortunate Specificity = 94% since such groups are often at increased risk for CRC. For example, CRC prevalence is ~20% higher in Black individuals compared to White individuals.⁵ 100 94% 91% • Here, we describe our validation study of a blood test for the early detection of CRC , 08 **ť** using a multiomics approach, which is a combination of DNA and protein assays. We also .**≥** 60 highlight adaptations to our recruitment processes to increase representation of historically underserved populations and broaden access to our clinical trial. **2** 40 **ഗ്** 20 OBJECTIVES Stage I/II Stage III/IV All CRC* (n=32) (n=17) (n=11) • To describe the development of a blood-based test for CRC screening. Our multiomic

- approach uses both DNA and protein assays to evaluate tumor- and non-tumor signals to detect CRC.
- To describe the recruitment processes used for our large validation study: Prevention of Colorectal Cancer Through Multiomics Blood Testing (the PREEMPT CRC[®] study)

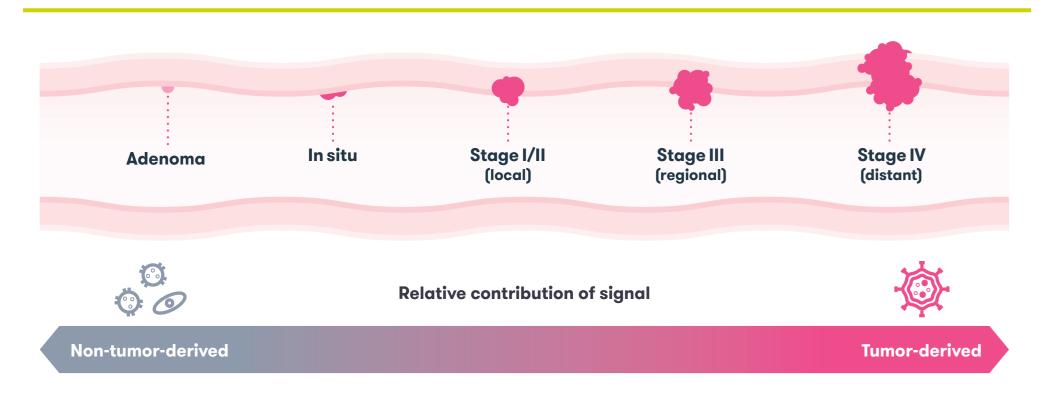


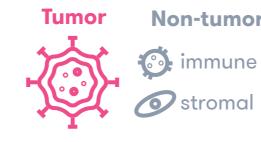
Figure 1. Biological signals change as cancer evolves

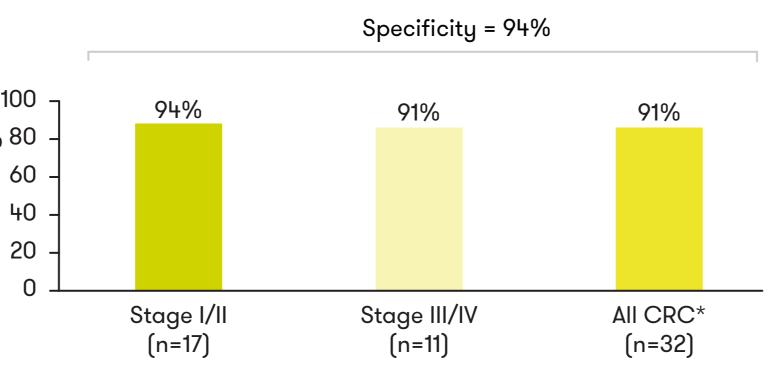
- While tumor-derived signals are abundant in late-stage disease, non-tumor-derived signal, such as that from the immune system's tumor response, may contribute more significantly in earlier stage disease
- A multiomics approach that complements tumor-derived signals with non-tumor-derived signals can better address the inherent limitations of a strategy only focused on a single assay

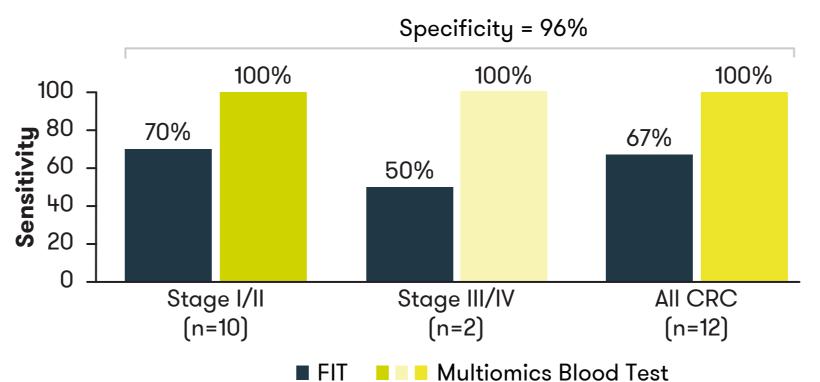
Initial enrollment target of 14,000 was achieved ahead of schedule

• However, during the COVID -19 pandemic, fewer Medicare-aged participants enrolled, contributing to a lower event rate. Therefore, to ensure adequate representation of this population and a sufficient number of events, the study will continue, with an estimated target enrollment of 25,000.

Girish Putcha,¹ Jeff Gregg,¹ Chuanbo Xu,¹ Aasma Shaukat,² and Theodore R. Levin³ ¹Freenome Holdings, Inc; ²University of Minnesota; ³Kaiser Permanente Division of Research All correspondence should be sent to authors@freenome.com


Figure 2. Our multiomics test combines tumor- and non-tumor signals from DNA and proteins and uses machine learning to detect CRC



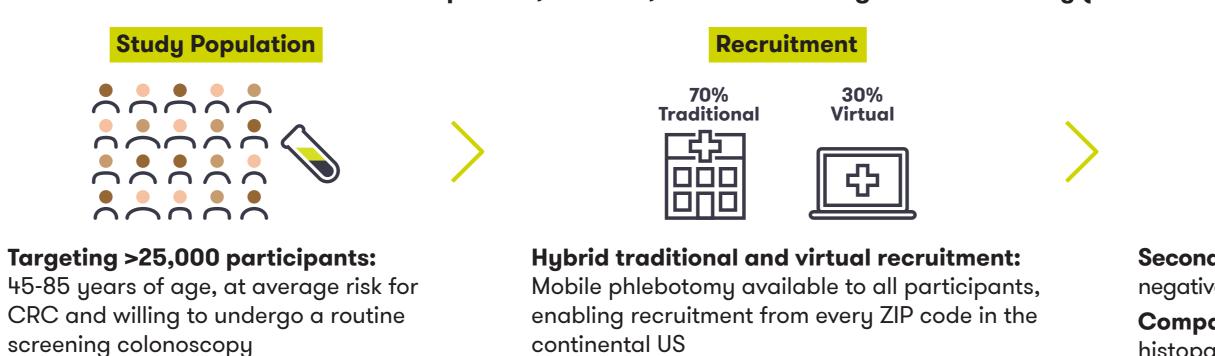


Potential Biological Signals

Figure 4. Our CRC blood test outperforms FIT⁷

*4 samples with unknown stage were tested

 Samples from our AI-EMERGE[®] study, consisting of average-risk screening and case-control cohorts, were used in this study, and included CRCs and colonoscopy-confirmed negatives

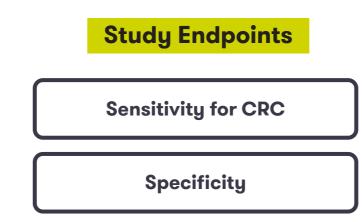

Positive and negative likelihood ratios were calculated (PLR = 15.2; NLR = 0.1)

1. Polymedco OC-Auto® FIT results are reported per manufacturer's specification at a cutoff of 100 ng/ml

- a blood sample provided stool for FIT testing.
- 95% specificity)⁸

Figure 5. The PREEMPT CRC study: Prevention of colorectal cancer through multiomics blood testing

Prospective, Blinded, Multi-center Registrational Study (NCT04369053)



Machine Learning Classifier

Results

• In Al-EMERGE, stool collection was optional. Only 52% of participants who provided

• FIT results are consistent with published data from DeeP-C (74% sensitivity and

Secondary: Sensitivity for advanced adenomas and negative and positive predictive values for CRC detection

Compared to colonoscopy with

histopathology as the reference method

Figure 6. Key elements of success include increasing diversity and accessibility to our clinical study

>25,000 participants, **45-85 years**

Largest prospective registrational trial studying CRC screening in the average-risk population

Focus on the inclusion of a diverse and representative population

Diversity

Enrollment to date:

- 12.8% Black individuals
- 11.6% Hispanic individuals

Key sites:

HBCUs

FQHCs

Partnerships:

- Colorectal Cancer Alliance
- Dia de la Mujer Latina*

HBCU = historically black college or university; FQHC = federally qualified health center *We have partnered with Dia de la Mujer Latina to build a culturally competent CRC education training curriculum for over 4,000 community health workers in Texas serving a predominantly medically underserved Hispanic community.

CONCLUSIONS

- Here we describe the development and validation of a multiomics blood test for the detection of early-stage (I/II) CRC
- Our multiomics test combines tumor- and non-tumor signals from DNA and protein biomarkers and uses machine learning to detect complex patterns of disease from blood
- Results from the AI-EMERGE study demonstrated sensitivity of 91% for CRC and a specificity of 94%
- The test is currently being validated in a prospective, multi-center registrational study called PREEMPT CRC which will likely be the largest study of a blood-based test in the average-risk CRC screening population
- The PREEMPT CRC study has both traditional and virtual recruitment arms to facilitate access and enable enrollment of a diverse and representative clinical trial population

REFERENCES

- 1. Davidson et al., JAMA. 2021
- 2. Wolf et al., CA Cancer J Clin. 2018
- 3. Piscitello et al., Cancer Prev Res. 2020
- 4. Joseph et al., Prev Chronic Dis. 2018

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the Freenome clinical operations and clinical development teams, Signe Fransen for editorial support and all PREEMPT CRC participants and principal investigators.

Accessibility

- Traditional recruitment enables in-person study enrollment
- Virtual recruitment enables enrollment from any ZIP code in the continental US
- Enables participants to use their preferred, local healthcare providers, reflecting real-world clinical care
- Mobile phlebotomy enables CRC screening at home

brid recruitment has brought in <u>rticipation from 40 states</u>

5. Siegel et al., CA Cancer J Clin. 2020 6. Hathway et al., ASPO. 2020 7. Putcha et al., ASCO GI. 2020 8. Imperiale et al., NEJM. 2014