Exploratory longitudinal analysis of cfDNA reveals potential biomarkers of mCRC progression and treatment response

Francesco Vallania,¹ Karen Assayag,¹ Peter Ulz,¹ Hayley Warsinske,¹ John St. John,¹ Carrie Baker Brachmann,² Scott D. Patterson,² Dung Thai,² Pankaj Bhargava,² Heinz-Josef Lenz,³ Manish A. Shah,⁴ Johanna Bendell⁵ and Claudia Rubio² ¹Freenome, South San Francisco, CA; ²Gilead Sciences, Foster City, CA; ³Keck School of Medicine of USC, Los Angeles, CA; ⁴Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY; ⁵Sarah Cannon Research Institute/Tennessee Oncology, Nashville All correspondence to authors@freenome.com

BACKGROUND

- Accurate biomarkers to predict disease progression and therapeutic response in cancer patients are needed
- Many predictive and prognostic blood tests in oncology rely on the detection of circulating tumor DNA (ctDNA), which represents only a fraction of all cell-free DNA (cfDNA)
- The majority of cfDNA originates from the immune system and, together with ctDNA, offers a unique opportunity to identify tumor- and non-tumor-derived biomarkers of predictive and prognostic value

OBJECTIVE

- The objective of this study was to identify biomarkers from cfDNA that may be associated with clinical outcomes in patients with metastatic colorectal cancer (mCRC) receiving andecaliximab (800mg Q2W IV)/ mFOLFOX/bevacizumab
- We explored the use of epigenetic signatures in total cfDNA to identify potential non-tumor-derived biomarkers associated with either disease progression or drug response (**Figure 1**)

METHODS

Sample collection

- Plasma samples were collected longitudinally from stage IV CRC patients enrolled in NCT01803282, in which 45 previously untreated metastatic CRC patients were treated with andecaliximab and standard doses of mFOLFOX6/bevacizumab. The overall response rate was 62%, median PFS was 10 months and OS was not reached. Andecaliximab is no longer being developed as an anti-cancer therapeutic.¹
- Twelve patients were analyzed pre-therapy (baseline) and longitudinally during treatment (92 samples) (**Table 1**)
- Tumor assessments by CT or MRI were obtained after every 2 cycles of therapy (dosed day 1 and 15 of 28 days)

Table 1. Patient demographics # of Samples PTID Age Sex **Tested** 104 75 Non-Progressor 114 70 Non-Progressor 117 52 Non-Progressor 103 74 ^Drogressor 115 74 Non-Progressor 116 53 Progressor 124 54 Non-Progressor 100 48 Progressor 102 62 Progressor 127 58 Progressor

Figure 1. cfDNA captures tumorand non-tumor-derived signals

^{*}Progression was defined by increased tumor size at the time of the clinical scan CR = complete responder; PR = partial responder; SD = stable disease

cfDNA analyses

131 56

- **Tumor fraction** was estimated using ichorCNA, which leverages somatic copy number alterations² (Figure 2)
- Whole-genome sequencing was performed and the probability of gene activation across each gene in the transcriptome was inferred from cfDNA fragment length and counts around transcription start sites³ (Figures 3 & 5)
- 59 genes curated from the literature were assessed when comparing baseline to time of first RECIST response (Figure 3)
- Transcription factor activity for 504 transcription factors was estimated by measuring **binding site accessibility** across the genome⁴ (**Figure 4**)

Progressor

Non-Responder Non-Progressor

- Statistical significance was estimated using Wilcoxon's rank sum test and associated p values are shown
- Significance across multiple time points over each patient group was assessed using a repeated measure ANCOVA
- Multiple hypothesis testing correction was applied by using FDR

RESULTS

Mean and standard error are shown

Baseline tumor fraction levels did not distinguish responders from non-responders or progressors from non-progressors

Figure 3. BMPR1A activation probabilities decrease significantly in responders

*One responder (PT ID 104) was excluded from this analysis because the time of response (CT scan) was missing Timing of blood draw prior to CT scan was ~2 months +/- 1 month (mean 59 days, SD 36 days); Timing of CT scan was ~4 months +/- 2 months (mean 112 days, SD 48 days); Mean and standard error are shown; BMPR1A = bone morphogenetic protein receptor 1A

- Estimated BMPR1A activation probability decreased in responders following therapy administration (p < 0.05)
- This decrease was observed prior to the first RECIST response
- BMPR1A is a receptor for ligands of BMP2, which is a member of the TGF-B superfamily known to be involved in cancer growth
- Germline mutations in BMPR1A cause CRC in patients with hereditary mixed polyposis syndrome⁵

*One responder (#104) was excluded from this analysis because the time of response (CT scan) was missing BMP = bone morphogenetic proteins

- The DNA-binding activity of SMAD1 increased in responders post-therapy (p < 0.05) but did not increase in non-responders
- SMAD1 functions directly downstream of BMPR1A in the BMP2 pathway
- Activation of the BMP2 pathway induces NK-cell activity and inhibits the development of CRC^{6,7}

Figure 5. KIR2DL1 activation is significantly higher in progressors over time

Non-Progressors - Progressors

*One responder (#104) was excluded from this analysis because the time of first response was missing

- Gene activation probabilities were normalized by tumor fraction and compared over time between progression groups
- Patients with elevated activation of KIR2DL1 progressed (p < 0.0001)
- KIR2DL1 inhibits cytotoxic activity in NK cells, suggesting a potential mechanism of progression involving immune suppression
- Levels of KIR2DL1 have been previously identified as a negative prognostic marker for survival^{8,9}

Figure 6. Baseline KIR2DL1 activation may be associated with progression

Disease characteristics were not included in this model

Baseline KIR2DL1 activation levels distinguished progressors from non-progressor with high accuracy Discriminatory power of KIR2DL1 activation (compared to that of tumor fraction) was measured by the area under the ROC curve

CONCLUSIONS

- In this exploratory longitudinal study we demonstrated the ability of our unique cfDNA platform to interrogate multiple features to reveal genes associated with metastatic CRC, drug response and their underlying mechanisms
- From cfDNA we identified biomarkers associated with progression and response:
- decreased BMPR1A estimated gene activation in responders
- increased SMAD1 binding site accessibility in responders
- increased KIR2DL1 estimated gene activation in progressors
- These genes are involved in NK cell maturation, indicating a possible relationship between the distribution of NK cell subpopulations and therapeutic response
- This work highlights the potential of cfDNA to provide biological insights beyond tumor fraction and that identification of non-tumor-derived signals may benefit biomarker discovery and drug target identification

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the Freenome Clinical Lab for processing samples, and Signe Fransen, Girish Putcha and David Weinberg for editorial support.

REFERENCES

- Lenz, H-J et al., ESMO. 2018
- Adalsteinsson et al., Nat Commun. 2017
- 3. St John et al., AACR. 2019
- 4. Ulz et al., Nat Commun. 2019
- Robson et al., Cancer Res. 2015
- Hardwick et al., Gastroenterology. 2004
- Benson et al., Cancer Immunol Res. 2014
- Beksac et al., PLoS One. 2015
- 5. Cheah et al., Am J Gastroenterol. 2009